
Common Lisp Project Manager
Eric Timmons
eric@timmons.dev

ABSTRACT
In this paperwe describe the Common Lisp ProjectManager (CLPM),
a new addition to the Common Lisp dependency management
ecosystem. CLPM provides a superset of features provided by the
Quicklisp client, the current de facto project manager, while main-
taining compatibility with both ASDF and the primary Quicklisp
project distribution. These new features bring the Common Lisp de-
pendency management experience closer to what can be achieved
in other programming languages without mandating a particular
development workflow/environment and without sacrificing Com-
mon Lisp’s trademark interactive style of development.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Software libraries and
repositories; Application specific development environments.

ACM Reference Format:
Eric Timmons. 2021. Common Lisp Project Manager. In Proceedings of 14th
European Lisp Symposium (ELS ’21). ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
One way to manage the complexity of software is to reuse code
by packaging up a project and using it as a dependency in another.
Unfortunately, this ends up introducing another level of complexity:
you have to manage your dependencies and their versions as well!
In the Common Lisp world, this management is usually performed
by three interacting pieces: ASDF [2] to ensure all dependencies
are compiled and loaded in the right order and the version of each
is sufficient, the Quicklisp client [6] for installing the dependencies
locally and configuring ASDF to find them, and a Quicklisp distri-
bution containing an index listing available projects and metadata
about them.

While effective and widely used, this combination of components
is missing many features that are taken for granted in other pro-
gramming language specific package management ecosystems. In
this paper we describe the Common Lisp Project Manager (CLPM)1,
a potential replacement for the Quicklisp client in the Common
Lisp dependency management ecosystem that provides many of
these missing features.

1CLPM is in the process of being renamed from the Common Lisp Package Man-
ager. While in most communities “package” typically refers to some installable unit
of software, it unfortunately collides with the use of “package” to describe symbol
namespaces in Common Lisp

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS ’21, May 3–4, 2021, Online
© 2021 Copyright held by the owner/author(s).

We begin by highlighting several of the key features that CLPM
implements, along with the overarching design philosophy. We
then describe the high-level design of CLPM. Last, we provide
information on how to obtain CLPM and several examples on how
to use it.

2 FEATURES AND PHILOSOPHY
CLPM has a set of features that, while commonly found in language
specific package managers for other languages, have not seen wide
adoption in the Common Lisp community. The most important of
these include:

(1) support for HTTPS,
(2) the ability to manage both global and project-local contexts,
(3) the ability to “lock” (or “pin”, “freeze”, etc.) dependencies to

specific versions and replicate that setup exactly on another
machine,

(4) a robust CLI for easy interfacing with shell scripts and other
languages,

(5) and the ability to install unreleased, development versions
of dependencies from source control.

While CLPM is not the first to implement any of these given
features for Common Lisp, we believe it is the first to do so in
a complete package that also places minimal constraints on the
workflow of the developer using it. For example, the quicklisp-https
[11] project adds HTTPS support to the Quicklisp client, but it
does so at the cost of requiring that Dexador [7] (and all of its
dependencies, including foreign SSL libraries) be loaded into the
development image.

Another example is the qlot [8] project. It adds project-local
contexts (but not global), locking, a CLI, and using development
versions of dependencies. One of the biggest drawbacks of qlot,
however, is that its CLI requires Roswell [12], which in turn implies
that Roswell is responsible for managing and installing your Lisp
implementations.

As just alluded, the most important guiding principle of CLPM
is that it should place minimal constraints on developer workflow.
An example of this principle in action is illustrated by how CLPM
is distributed. For Linux systems, a static executable is provided
that runs on a wide variety of distributions with no dependencies.
For MacOS systems, a binary is provided that requires only OS
provided foreign libraries. And on Windows, CLPM is distributed
using a standalone installer and again depends only on OS provided
foreign libraries.

Perhaps the secondmost important principle is that CLPM should
be highly configurable, yet provide a set of sane and safe defaults.
A concrete example of this is shown by CLPM’s behavior when
installing or updating projects. By default, CLPM will describe the
change about to be performed and require explicit user consent
before making the modification. However, this behavior can be
changed for developers that like to live on the edge or otherwise
have complete trust in CLPM and the projects they are installing.



ELS ’21, May 3–4, 2021, Online Eric Timmons

3 DESIGN
In this section we discuss the design of CLPM. First, we describe the
overall architecture, including the three main CLPM components.
Second, we describe some of the benefits the architecture provides
and how CLPM leverages them. Third, we describe where CLPM
locates the metadata for projects that it installs. Last, we describe
global and project-local contexts in CLPM.

3.1 Architecture
CLPM is split into two user facing components: the worker and
the client, as well as one internal component: the groveler. The
worker is a standalone executable that is responsible for all the
heavy lifting. The worker interacts with the network to download
releases and metadata, performs dependency resolution, unpacks
archives, and manages contexts. The worker is implemented in
Common Lisp and distributed both as a precompiled executable
(static executable for Linux) and source code for those that want to
compile it themselves. It exposes both a CLI interface and a REPL
interface. The CLI interface allows for easy integration with tools
such as shell scripts and continuous integration services. The REPL
interface is used primarily by the CLPM client.

The client is a small system, written in portable Common Lisp,
with ASDF/UIOP as its only dependency. The client is meant to be
loaded into a Lisp image to facilitate the interactive management
of contexts and development of code. It does this by exposing a
set of functions corresponding to the operations the worker can
perform as well as integrating with ASDF’s system search functions.
Additionally, it has functionality to remove itself from an image if
it is no longer required (such as when dumping an executable). In
order to interact with the worker, the client spawns a new worker
process, starts its REPL, and they communicate back and forth with
S-expressions.

The last component is the groveler. Ideally users never interact
directly with this component; instead, it is used by the worker to
gather information from ASDF system definitions in a clean envi-
ronment. Nominally, the data that CLPM require about a system
would be distributed in metadata published by project indices. How-
ever this metadata is not available for development versions of a
project. As ASDF allows systems to specify that some dependencies
must be loaded before the system definition can even be processed,
it is in general not possible to extract system metadata without
running arbitrary code.

The groveler consists of a small set of portable Common Lisp
functions that the worker loads into a fresh Common Lisp in-
stance. Once loaded, the groveler and worker communicate via
S-expressions, with the worker specifying which systems to load
and extract information from and the groveler reporting back the
information as well as any errors. If there is an error, the worker
addresses it by recording any missing dependencies in the depen-
dency resolution process, loading them into the groveler, and trying
again. The worker keeps track of the project releases loaded in the
groveler and starts a new groveler process if needed (e.g., the grov-
eler has v2 of system A loaded, but a requirement determined later
in the resolution process caps system A at v1).

3.2 Dependencies and Non-portable Code in
the Worker

One benefit of the worker/client split is that it enables the worker
to freely leverage both dependencies (Common Lisp and foreign)
and non-portable implementation features.

There are two benefits with respect to dependencies in the
worker. First, the worker can reuse code without worrying about
interference with the code the user wishes to develop. This inter-
ference may manifest itself in many ways, including as package
nickname conflicts, version incompatibilities (CLPM needs version
x of a system, but the user’s code needs version y), or image size
(e.g., the user’s code uses few dependencies and they care about
the final size of the image for application delivery).

Second, the worker can use foreign libraries that it is unlikely
the user needs loaded for their development. A prime example of
this is libssl, which CLPM uses on Linux and MacOS systems to
provide HTTP support. A second-order benefit of this approach is
that CLPM can statically link foreign libraries into the worker so
that the user does not even need to have them installed locally (if
they install a pre-compiled version of CLPM at least).

The ability for the worker to freely use dependencies has an
additional knock-on effect: the development of CLPM can help
improve the state of Common Lisp libraries at large. To date, the
development of CLPM has resulted in at least ten issues and merge
requests being reported to upstream maintainers, eight of which
have been merged or otherwise addressed. Additionally, it has
been the motivating factor behind several contributions to SBCL to
improve musl libc support.

The worker routinely needs to perform operations that require
functionality beyond the Common Lisp specification. For example:
loading foreign libraries, interfacing with the OS to set file time
stamps when unpacking archives, and network communication to
download code. While portability libraries exist for many of these
features, they are not perfect and do not necessarily extend support
to all implementations [9]. The worker/client split allows us to
choose a small number of target implementations and focus our
testing and distribution efforts using only those implementations
while not worrying about restricting what implementation the user
chooses to develop their code.

Currently, CLPM targets only SBCL [3] for worker support. This
is due to SBCL’s broad compatibility with OSes and CPU archi-
tectures. We look to extend worker support to at least one other
implementation before CLPM reaches v1.0. The next implemen-
tation targeted by the worker will likely be ABCL [1] due to the
ubiquity of the Java Virtual Machine.

3.3 Indices
Project indices are used to advertise projects and metadata about
those projects, such as their released versions, what systems are
available in each release, and the version number and dependencies
of those systems. The most widely used project index in the Com-
mon Lisp community is the primary Quicklisp distribution. CLPM
is tested against this index and has full support for interacting with
it.

While there are other Quicklisp-like project indexes in the wild
that work with the Quicklisp client, such as Ultralisp [5], CLPM



Common Lisp Project Manager ELS ’21, May 3–4, 2021, Online

may not work with all of them. This incompatibility is largely due
to a lack of formal specification as to what constitutes a Quicklisp
distribution, including what files are required and their contents.
For instance, at the time of writing CLPM does not work with the
Ultralisp distribution because Ultralisp does not publish a list of all
its historical versions, unlike the primary Quicklisp distribution.

In addition to supporting Quicklisp distributions as project in-
dices, CLPM supports Common Lisp Project Indices (CLPI). CLPI
is part of the overarching CLPM project and seeks to fully docu-
ment an index format as well as add features that CLPM can take
advantage of that are missing from Quicklisp distributions. One
feature CLPI adds is that system versions (taken from ASDF system
definitions) are provided. Quicklisp provides only the date at which
the project snapshot was taken.

A secondmajor difference is that projects and systems are the top-
level concepts in CLPI instead of distribution version. Additionally,
CLPI defines the majority of its files to be append-only. These
properties allow CLPM to be more efficient in terms of network
usage as only the metadata for projects potentially needed in the
context are transferred andmetadata on new releases can be fetched
incrementally over time.

3.4 Contexts
CLPM manages both global and project-local contexts. A context
is defined as a set of project indices in use, a set of constraints
describing the projects (and their versions) that should be available
in the context, and a set of project releases that satisfy both the
explicit constraints and the implicit constraints added by every
project in the context (i.e., transitive dependencies).

Each global context is named by a string. CLPM provides tools
that generate ASDF source registry configuration files so that you
can add these global contexts to your default registry and have
access to all projects installed in them without the need for CLPM
at all (after installation, at least).

A project-local context (also known as a bundle) is named by a
pathname that points to a file containing the first two elements of a
context (the indices and constraints). After this context is installed,
all of the context information is located in a file next to the file that
names the context. The names of these files are typically clpmfile
and clpmfile.lock. Both of these files are designed to be checked
into a project’s source control and contain enough information to
reproduce the context on another machine.

Both CLPM’s CLI and the client provide commands to add new
constraints to a context, update an entire context so that every
project is at the latest release that satisfies all constraints, or update
just a subset of the projects in the context. Additionally, the CLI
provides commands that can execute other, arbitrary, commands in
an environment where ASDF is configured to find only the projects
installed in the desired context.

Global contexts are largely inspired by Python virtual environ-
ments created by the virtualenvwrapper project [10]. Project-local
contexts are largely inspired by Ruby’s Bundler project [4].

4 USE
In this section we provide some examples of how to use CLPM. We
focus on project-local contexts (bundles) as we believe these are a
more broadly useful feature than global contexts.

4.1 Installing CLPM
Tarballs (and MSI installers) of the most recent CLPM release, along
with up to date documentation, can be found at https://www.clpm.
dev. Windows users merely need to run the installer. Linux and
MacOS users need to only unpack the tarball in an appropriate
location (typically /usr/local/). If you wish to install from source,
the CLPM source code (as well as its issue tracker) can be found
on the Common Lisp Foundation Gitlab instance at https://gitlab.
common-lisp.net/clpm/clpm.

After installing CLPM, it is recommended that you configure
ASDF to find the CLPM client. To do this, simply run clpm client
source-registry.d and follow the instructions printed to the
screen.

Last, you may wish to consider loading the CLPM client every
time you start your Lisp implementation. You can determine the
currently recommended way of doing so by running clpm client
rc and reading the printed instructions. The remainder of this
section assumes you have CLPM installed and have a REPL to an
image where the CLPM client is loaded.

4.2 Creating a Bundle
The simplest possible bundle is one that uses a single project index
and specifies that all constraints come from an .asd file. To create
such a bundle you need to perform two actions. First, a clpmfile
must be created. This can be done at the REPL using the client’s
bundle-init function. After running this function, you will have
a clpmfile that looks similar to the following:

(:api-version "0.3")

(:source "quicklisp"
:url "https://beta.quicklisp.org/dist/quicklisp.txt"
:type :quicklisp)

(:asd "my-system.asd")

Notice that the first statement in the clpmfile declares the
bundle API in use. This allows for the file format to evolve over
time while maintaining backward compatibility. Second, notice
that every directive is simply a plist. This makes it trivial for any
Common Lisp project to read and manipulate the file.

After the clpmfile is created, the bundle must be installed (that
is all the constraints must be resolved and dependencies down-
loaded). This can be done at the REPL using the install function.

CLPM does not believe in modifying a context without explicit
permission from the developer. As such, the client will by default
produce a condition before it performs any modifications. This
condition describes the actions that are about to be performed and
has two restarts established for it: one to approve and perform the
changes, and one to abort. Therefore, upon evaluating install,
you will be dropped into the debugger to approve the changes. Of
course, this behavior can be customized.

https://www.clpm.dev
https://www.clpm.dev
https://gitlab.common-lisp.net/clpm/clpm
https://gitlab.common-lisp.net/clpm/clpm


ELS ’21, May 3–4, 2021, Online Eric Timmons

4.3 Activating the Bundle
Once a bundle has been installed, the next step is to activate it. The
activation process configures ASDF so that it can locate all systems
in the bundle. The activation process also optionally integrates the
CLPM client with ASDF so that CLPM is aware when you try to
find a system that is not present in the bundle and can provide
options on adding it to the bundle. This integration is enabled by
default and discussed more next. Activation is performed using the
activate-context function.

The CLPMCLI has an equivalent command that configures ASDF
using only environment variables. This feature is particularly useful
when running scripts or when running tests via CLI. For example,
to run an SBCL process where ASDF is configured to use only the
systems in the bundlewithout also needing to have the client loaded,
simply run clpm bundle exec -- sbcl in the same directory as
the clpmfile.

4.4 Modifying the Bundle
The most common modification made to a bundle is to add more
dependencies to it. If your system acquires a new dependency you
have two options on how to add it to the bundle. The first option is
to explicitly reinstall the bundle using install. This option will
find any new dependency and install it, while trying its best to not
change the installed versions of the projects already in the bundle.

The second option is to just use asdf:load-system to reload
your system. If you have the client’s ASDF integration enabled, the
client will notice that the system is missing from the bundle and
take action. The default action is to signal a condition informing
the developer of the situation with several restarts in place. Fol-
lowing CLPM’s guiding principles, however, this behavior can be
modified to, for example, automatically install the dependency à la
the Quicklisp client.

5 CONCLUSION
We have presented CLPM — the Common Lisp Project Manager.
CLPM introduces many features to the Common Lisp community
that are taken for granted in other programming language specific
package managers. Key among these features are HTTPS support,
a standalone CLI to the worker, global and project-local context
management, and lock files. Additionally, CLPM adds these features
without forcing a particular development practice or environment
and without sacrificing “Lispy-ness” or interactive development.

6 FUTUREWORK
We plan to continue developing CLPM and continue adding useful
features. Two planned features of note are an extensible architecture
for client/worker communication and the ability to add scripts from
an installed project to a user’s PATH. The former would enable a
myriad of new configurations, including CLPM workers deployed
as persistent daemons that communicate with clients over network
sockets or setups that are Dockerized or otherwise isolated from
other processes on the system.

In addition to improvements to CLPM itself, we aim to continue
contributing back to the upstreams of our dependencies. Notably,
we are in the process of interacting with the ASDF developers to

add support for more expressive version numbers and dependency
constraints in defsystem forms.

Last, it is our strong preference to enable developers to use
the complete power of CLPM without introducing a split in the
community with regards to project indices. Therefore, we would
like to take lessons learned from and features added to CLPI and
integrate them into Quicklisp distributions.

REFERENCES
[1] Armed Bear Common Lisp. https://abcl.org/.
[2] ASDF – Another System Definition Facility. https://common-lisp.net/project/

asdf/.
[3] Steel Bank Common Lisp. http://www.sbcl.org/.
[4] André Arko and Engine Yard. Bundler: The best way to manage a Ruby applica-

tion’s gems. https://bundler.io/.
[5] Alexander Artemenko. Ultralisp - Fast Common Lisp Repository. https://ultralisp.

org/.
[6] Zach Beane. Quicklisp. https://www.quicklisp.org/beta/.
[7] Eitaro Fukamachi. Dexador. https://github.com/fukamachi/dexador/, .
[8] Eitaro Fukamachi. Qlot. https://github.com/fukamachi/qlot/, .
[9] Nicolas Hafner. Common Lisp Portability Library Status. https://portability.cl/.
[10] Doug Hellmann. virtualenvwrapper. https://virtualenvwrapper.readthedocs.io/

en/latest/.
[11] SANOMasatoshi. Quicklisp-HTTPS. https://github.com/snmsts/quicklisp-https/,

.
[12] SANO Masatoshi. Roswell. https://github.com/roswell/roswell/, .

https://abcl.org/
https://common-lisp.net/project/asdf/
https://common-lisp.net/project/asdf/
http://www.sbcl.org/
https://bundler.io/
https://ultralisp.org/
https://ultralisp.org/
https://www.quicklisp.org/beta/
https://github.com/fukamachi/dexador/
https://github.com/fukamachi/qlot/
https://portability.cl/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://github.com/snmsts/quicklisp-https/
https://github.com/roswell/roswell/

	Abstract
	1 Introduction
	2 Features and Philosophy
	3 Design
	3.1 Architecture
	3.2 Dependencies and Non-portable Code in the Worker
	3.3 Indices
	3.4 Contexts

	4 Use
	4.1 Installing CLPM
	4.2 Creating a Bundle
	4.3 Activating the Bundle
	4.4 Modifying the Bundle

	5 Conclusion
	6 Future Work
	References

